If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-10x+6x^2=4
We move all terms to the left:
-10x+6x^2-(4)=0
a = 6; b = -10; c = -4;
Δ = b2-4ac
Δ = -102-4·6·(-4)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-14}{2*6}=\frac{-4}{12} =-1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+14}{2*6}=\frac{24}{12} =2 $
| 8.5x-4x+9=45 | | 8x+6+4=4x | | +4x+2-2x=x+6 | | -19(3n+7)=38 | | 5x+1-4=6+8x+-6 | | 4x+2=9x-30 | | 3x+-6=-8+5 | | -3(1+7x)-3=-90 | | 11/5x-1/5=-15 | | (21/10)n=(7/6) | | 21/10n=1/1/6 | | 7m-10-13m=39 | | b^2-17b+144=0 | | 6x+5+4=6x+4 | | 3b+5=7b-7 | | (5x)/14=83 | | U/2+3=u/5 | | 3(10+y)-3y=30 | | -6(3-6r)=-18+44r | | 24m=36 | | 7=b−535 | | 45+x+31=82 | | 160=8(6+7x) | | -2-n/5=63 | | 5-17=-4(3+2x)+4x | | j/4+ 33=43 | | j4+ 33=43 | | 7x+8(.75)=9.50 | | 1/2(14x+10)=-2/3(15x-27) | | 6(4y)-y=76 | | 139=7a+6(a+8) | | -1x-4=11+2x |